12 research outputs found

    Concurrent Kleene Algebra: Free Model and Completeness

    Get PDF
    Concurrent Kleene Algebra (CKA) was introduced by Hoare, Moeller, Struth and Wehrman in 2009 as a framework to reason about concurrent programs. We prove that the axioms for CKA with bounded parallelism are complete for the semantics proposed in the original paper; consequently, these semantics are the free model for this fragment. This result settles a conjecture of Hoare and collaborators. Moreover, the techniques developed along the way are reusable; in particular, they allow us to establish pomset automata as an operational model for CKA.Comment: Version 2 includes an overview section that outlines the completeness proof, as well as some extra discussion of the interpolation lemma. It also includes better typography and a number of minor fixes. Version 3 incorporates the changes by comments from the anonymous referees at ESOP. Among other things, these include a worked example of computing the syntactic closure by han

    On partial order semantics for SAT/SMT-based symbolic encodings of weak memory concurrency

    Full text link
    Concurrent systems are notoriously difficult to analyze, and technological advances such as weak memory architectures greatly compound this problem. This has renewed interest in partial order semantics as a theoretical foundation for formal verification techniques. Among these, symbolic techniques have been shown to be particularly effective at finding concurrency-related bugs because they can leverage highly optimized decision procedures such as SAT/SMT solvers. This paper gives new fundamental results on partial order semantics for SAT/SMT-based symbolic encodings of weak memory concurrency. In particular, we give the theoretical basis for a decision procedure that can handle a fragment of concurrent programs endowed with least fixed point operators. In addition, we show that a certain partial order semantics of relaxed sequential consistency is equivalent to the conjunction of three extensively studied weak memory axioms by Alglave et al. An important consequence of this equivalence is an asymptotically smaller symbolic encoding for bounded model checking which has only a quadratic number of partial order constraints compared to the state-of-the-art cubic-size encoding.Comment: 15 pages, 3 figure

    2-Nested Simulation is not Finitely Equationally Axiomatizable

    Get PDF
    2-nested simulation was introduced by Groote and Vaandrager [10] as the coarsest equivalence included in completed trace equivalence for which the tyft/tyxt format is a congruence format. In the lineartime-branching time spectrum of van Glabbeek [8], 2-nested simulationis one of the few equivalences for which no finite equational axiomatization is presented. In this paper we prove that such an axiomatizationdoes not exist for 2-nested simulation.Keywords: Concurrency, process algebra, basic CCS, 2-nested simulation, equational logic, complete axiomatizations

    Regular Sets of Pomsets With Autoconcurrency

    No full text
    Partially ordered multisets (or pomsets) constitute one of the most basic models of concurrency. We introduce and compare several notions of regularity for pomset languages by means of contexts and residues of dierent kinds. We establish some interesting closure properties that allow us to relate this approach to SP-recognizability in the particular case of series-parallel pomsets. Finally we introduce the framework of compatible languages which generalizes several classical formalisms (including message sequence charts and ring pomsets of Petri nets). In this way, we identify regular sets of pomsets as recognizable subsets in the monoid of multiset sequences

    Schedulers and finishers : on generating the behaviours of an event structure

    No full text
    It is well known that every trace of a transition system can be generated using a scheduler. However, this basic completeness result does not hold in event structure models. The reason for this failure is that, according to its standard definition, a scheduler chooses which action to schedule and, at the same time, finishes the one scheduled last. Thus, scheduled events will never be able to overlap. We propose to separate scheduling from finishing and introduce the dual notion of finishers which, together with schedulers, are enough to regain completeness back. We then investigate all possible interactions between schedulers and finishers, concluding that simple alternating interactions are enough to express complex ones. Finally, we show how finishers can be used to filter behaviours to the extent to which they capture intrinsic system characteristics.18 page(s

    Tracing Man−in−the−Middle in monoidal categories

    Get PDF
    Man-in-the-Middle (MM) is not only a ubiquitous attack pattern in security, but also an important paradigm of network computation and economics. Recognizing ongoing MM-attacks is an important security task; modeling MM-interactions is an interesting task for semantics of computation. Traced monoidal categories are a natural framework for MM-modelling, as the trace structure provides a tool to hide what happens *in the middle*. An effective analysis of what has been traced out seems to require an additional property of traces, called *normality*. We describe a modest model of network computation, based on partially ordered multisets (pomsets), where basic network interactions arise from the monoidal trace structure, and a normal trace structure arises from an iterative, i.e. coalgebraic structure over terms and messages used in computation and communication. The correspondence is established using a convenient monadic description of normally traced monoidal categories.Comment: 23 pages, 20 figures, Coalgebraic Methods in Computer Science (CMCS) 201

    REXband : a Multi-User Interactive Exhibit to Explore Medieval Music

    Get PDF
    Abstract. Van Glabbeek (1990) presented the linear time/branching time spectrum of behavioral equivalences for finitely branching, concrete, sequential processes. He studied these semantics in the setting of the basic process algebra BCCSP, and tried to give finite complete axiomatizations for them. Obtaining such axiomatizations in concurrency theory often turns out to be difficult, even in the setting of simple languages like BCCSP. This has raised a host of open questions that have been the subject of intensive research in recent years. Most of these questions have been settled over BCCSP, either positively by giving a finite complete axiomatization, or negatively by proving that such an axiomatization does not exist. Still some open questions remain. This paper reports on these results, and on the state-of-the-art in axiomatizations for richer process algebras with constructs like sequential and parallel composition.
    corecore